

Atmospheric Methane From a gas well to a hemisphere

Christian Frankenberg and many others

Recent changes in atmospheric methane

Recent papers on methane rise (just a few of them)

RESEARCH ARTICLE

10.1002/2016GB005406

Key Points:

- Atmospheric methane is growing rapidly
- Isotopic evidence implies that the growth is driven by biogenic sources
- Growth is dominated by tropical

Rising atmospheric methane: 2007–2014 growth and isotopic shift

E. G. Nisbet¹, E. J. Dlugokencky², M. R. Manning³, D. Lowry¹, R. E. Fisher¹, J. L. France^{1,4}, S. E. Michel⁵, J. B. Miller^{5,6}, J. W. C. White⁵, B. Vaughn⁵, P. Bousquet⁷, J. A. Pyle^{8,9}, N. J. Warwick^{8,9}, M. Cain^{8,9}, R. Brownlow¹, G. Zazzeri¹, M. Lanoisellé¹, A. C. Manning⁴, E. Gloor¹⁰, D. E. J. Worthy¹¹, E.-G. Brunke¹², C. Labuschagne^{12,13}, E. W. Wolff¹⁴, and A. L. Ganesan¹⁵

Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase

Andrew L. Rice^{a,1,2}, Christopher L. Butenhoff^{a,1}, Doaa G. Teama^a, Florian H. Röger^a, M. Aslam K. Khalil^a, and Reinhold A. Rasmussen^b

A 21st century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄

Hinrich Schaefer^{1,*}, Sara E. Mikaloff Fletcher¹, Cordelia Veidt², Keith R. Lassey^{1,†}, Gordon W. Brailsford¹, Tony M. Bromley¹, Edward J. Dlugokencky³, Sylvia E. Michel⁴, John B. Miller³, Ingeborg Levin², Dave C. Lowe^{1,‡}, Ross J. Martin¹, Bruce H. Vaughn⁴, James W. C. White⁴

+ Author Affiliations

+-* Corresponding author. E-mail: hinrich.schaefer@niwa.co.nz

+J† Present address: Lassey Research & Education, Wellington, New Zealand.

Present address: LoweNZ, Plimmerton, New Zealand.

Science 10 Mar 2016:

DOI: 10.1126/science.aad2705

Role of OH variability in the stalling of the global atmospheric CH₄ growth rate from 1999 to 2006

Joe McNorton^{1,2}, Martyn P. Chipperfield^{1,2}, Manuel Gloor³, Chris Wilson^{1,2}, Wuhu Feng^{1,4}, Garry D. Hayman⁵, Matt Rigby⁶, Paul B. Krummel⁷, Simon O'Doherty⁶, Ronald G. Prinn⁸, Ray F. Weiss⁹, Dickon Young⁶, Ed Dlugokencky¹⁰, and Steve A. Montzka¹⁰

From the hemisphere to individual methane plumes (back later)

4 Corners airborne campaign

Airborne methane remote measurements reveal heavytail flux distribution in Four Corners region

k

Christian Frankenberg^{a,b,1}, Andrew K. Thorpe^b, David R. Thompson^b, Glynn Hulley^b, Eric Adam Kort^c, Nick Vance^b, Jakob Borchardt^d, Thomas Krings^d, Konstantin Gerilowski^d, Colm Sweeney^{e,f}, Stephen Conley^{g,h}, Brian D. Bue^b, Andrew D. Aubrey^b, Simon Hook^b, and Robert O. Green^b

^aDivision of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; ^bJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; ^cDepartment of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109; ^dInstitute of Environmental Physics, University of Bremen, 28334 Bremen, Germany; ^eCooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO 80309; ^fGlobal Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305; ^gScientific Aviation, Boulder, CO 80301; and ^hDepartment of Land, Air, and Water Resources, University of California, Davis, CA 95616

Kort, Frankenberg et al, GRL, 2014

How it all got started

SCIAMACHY Methane Anomalies

Kort, Frankenberg et al, GRL, 2014

—> Estimated to be about 0.5Tg/yr, almost 10% of US total Oil&Gas

How it all got started

SCIAMACHY Methane Anomalies

Potential Sources of CH₄ in Four Corners Region

- Total Production rate in San Juan Basin about 1000 billion cubic feet (20Tg/yr)
- 0.5Tg/yr would be about 2.5%
- Largest Coalbed methane production area in US

Methane Airborne Remote Sensing AVIRIS-NG (5nm sampling, 400-2500nm)

Campaign Area

Airborne operations

Real-Time CH₄ display

· 0 0 0 0 0 0 M P

AVIRIS-NG real time methane detection (Thompson et al, AMT)

Native resolution examples (background is 2.3µm radiance in gray, meter axis)

Up-scaling to fluxes (integrate methane amount in plume)

>200 plumes detected

Plume distribution — Log-normal

Plume distribution – Wellhead

Plume distribution - ???

Methane plume

Plume distribution

Plume distribution — underground storage tank

Methane plume from tank

Plume distribution - Wellhead

Plume distribution — Guesses welcome

Plume distribution — Unclear (multiple sources, maybe well completion? Near coal-mine

What does the log-normal distribution imply?

